If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2X^2+10X-77=0
a = 2; b = 10; c = -77;
Δ = b2-4ac
Δ = 102-4·2·(-77)
Δ = 716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{716}=\sqrt{4*179}=\sqrt{4}*\sqrt{179}=2\sqrt{179}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{179}}{2*2}=\frac{-10-2\sqrt{179}}{4} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{179}}{2*2}=\frac{-10+2\sqrt{179}}{4} $
| 7/2x=1/2x=71/2=5/2x | | 3=k/4+7 | | 2=11+2m+6 | | -3r-9=-4r-5 | | 7y-10-3y+5=0 | | 95=-8(4+8n)-1 | | 6x+10=2(3x+8) | | 2w+4(w+8)=26 | | 4(-4x+3)-3x+4=4(-4x+3)=-174 | | 21-(x+5=5x-8 | | 2(8x-4)=4x+3 | | 6(x-7)-3x=-36 | | 4(-4x+3)-3x+4=4(−4x+3)−3x+4=-174 | | 6(x+2)-2=3x+3(4+x) | | -7(n+7)-(9+3n)=-11n | | s-62/3=8 | | 3x-8+4x-3=5x+6 | | 1/3m=43 | | 3=−4g −53 | | F(x)=(1/5)× | | 23-4z=15 | | 6(y+2)=5y-6 | | 5/2c-46=84 | | m/15=-2/3 | | (19x+20)-(11x+10)=(9x+2) | | h-8/2=4 | | 4/5x+1=-1/5x-1 | | 2(x-4)=1/4+11-3x | | 7/10=7y# | | -25=z/8-27 | | 15-2w-2=2(w–15)-1 | | -3(5x-5)+3=-15x+18 |